big-moving.ru/api/soft/monako/esm/vs/base/common/diff/diff.js

789 lines
44 KiB
JavaScript
Executable File

/*---------------------------------------------------------------------------------------------
* Copyright (c) Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See License.txt in the project root for license information.
*--------------------------------------------------------------------------------------------*/
import { DiffChange } from './diffChange.js';
function createStringSequence(a) {
return {
getLength: function () { return a.length; },
getElementAtIndex: function (pos) { return a.charCodeAt(pos); }
};
}
export function stringDiff(original, modified, pretty) {
return new LcsDiff(createStringSequence(original), createStringSequence(modified)).ComputeDiff(pretty);
}
//
// The code below has been ported from a C# implementation in VS
//
var Debug = /** @class */ (function () {
function Debug() {
}
Debug.Assert = function (condition, message) {
if (!condition) {
throw new Error(message);
}
};
return Debug;
}());
export { Debug };
var MyArray = /** @class */ (function () {
function MyArray() {
}
/**
* Copies a range of elements from an Array starting at the specified source index and pastes
* them to another Array starting at the specified destination index. The length and the indexes
* are specified as 64-bit integers.
* sourceArray:
* The Array that contains the data to copy.
* sourceIndex:
* A 64-bit integer that represents the index in the sourceArray at which copying begins.
* destinationArray:
* The Array that receives the data.
* destinationIndex:
* A 64-bit integer that represents the index in the destinationArray at which storing begins.
* length:
* A 64-bit integer that represents the number of elements to copy.
*/
MyArray.Copy = function (sourceArray, sourceIndex, destinationArray, destinationIndex, length) {
for (var i = 0; i < length; i++) {
destinationArray[destinationIndex + i] = sourceArray[sourceIndex + i];
}
};
return MyArray;
}());
export { MyArray };
//*****************************************************************************
// LcsDiff.cs
//
// An implementation of the difference algorithm described in
// "An O(ND) Difference Algorithm and its variations" by Eugene W. Myers
//
// Copyright (C) 2008 Microsoft Corporation @minifier_do_not_preserve
//*****************************************************************************
// Our total memory usage for storing history is (worst-case):
// 2 * [(MaxDifferencesHistory + 1) * (MaxDifferencesHistory + 1) - 1] * sizeof(int)
// 2 * [1448*1448 - 1] * 4 = 16773624 = 16MB
var MaxDifferencesHistory = 1447;
//let MaxDifferencesHistory = 100;
/**
* A utility class which helps to create the set of DiffChanges from
* a difference operation. This class accepts original DiffElements and
* modified DiffElements that are involved in a particular change. The
* MarktNextChange() method can be called to mark the separation between
* distinct changes. At the end, the Changes property can be called to retrieve
* the constructed changes.
*/
var DiffChangeHelper = /** @class */ (function () {
/**
* Constructs a new DiffChangeHelper for the given DiffSequences.
*/
function DiffChangeHelper() {
this.m_changes = [];
this.m_originalStart = Number.MAX_VALUE;
this.m_modifiedStart = Number.MAX_VALUE;
this.m_originalCount = 0;
this.m_modifiedCount = 0;
}
/**
* Marks the beginning of the next change in the set of differences.
*/
DiffChangeHelper.prototype.MarkNextChange = function () {
// Only add to the list if there is something to add
if (this.m_originalCount > 0 || this.m_modifiedCount > 0) {
// Add the new change to our list
this.m_changes.push(new DiffChange(this.m_originalStart, this.m_originalCount, this.m_modifiedStart, this.m_modifiedCount));
}
// Reset for the next change
this.m_originalCount = 0;
this.m_modifiedCount = 0;
this.m_originalStart = Number.MAX_VALUE;
this.m_modifiedStart = Number.MAX_VALUE;
};
/**
* Adds the original element at the given position to the elements
* affected by the current change. The modified index gives context
* to the change position with respect to the original sequence.
* @param originalIndex The index of the original element to add.
* @param modifiedIndex The index of the modified element that provides corresponding position in the modified sequence.
*/
DiffChangeHelper.prototype.AddOriginalElement = function (originalIndex, modifiedIndex) {
// The 'true' start index is the smallest of the ones we've seen
this.m_originalStart = Math.min(this.m_originalStart, originalIndex);
this.m_modifiedStart = Math.min(this.m_modifiedStart, modifiedIndex);
this.m_originalCount++;
};
/**
* Adds the modified element at the given position to the elements
* affected by the current change. The original index gives context
* to the change position with respect to the modified sequence.
* @param originalIndex The index of the original element that provides corresponding position in the original sequence.
* @param modifiedIndex The index of the modified element to add.
*/
DiffChangeHelper.prototype.AddModifiedElement = function (originalIndex, modifiedIndex) {
// The 'true' start index is the smallest of the ones we've seen
this.m_originalStart = Math.min(this.m_originalStart, originalIndex);
this.m_modifiedStart = Math.min(this.m_modifiedStart, modifiedIndex);
this.m_modifiedCount++;
};
/**
* Retrieves all of the changes marked by the class.
*/
DiffChangeHelper.prototype.getChanges = function () {
if (this.m_originalCount > 0 || this.m_modifiedCount > 0) {
// Finish up on whatever is left
this.MarkNextChange();
}
return this.m_changes;
};
/**
* Retrieves all of the changes marked by the class in the reverse order
*/
DiffChangeHelper.prototype.getReverseChanges = function () {
if (this.m_originalCount > 0 || this.m_modifiedCount > 0) {
// Finish up on whatever is left
this.MarkNextChange();
}
this.m_changes.reverse();
return this.m_changes;
};
return DiffChangeHelper;
}());
/**
* An implementation of the difference algorithm described in
* "An O(ND) Difference Algorithm and its variations" by Eugene W. Myers
*/
var LcsDiff = /** @class */ (function () {
/**
* Constructs the DiffFinder
*/
function LcsDiff(originalSequence, newSequence, continueProcessingPredicate) {
if (continueProcessingPredicate === void 0) { continueProcessingPredicate = null; }
this.OriginalSequence = originalSequence;
this.ModifiedSequence = newSequence;
this.ContinueProcessingPredicate = continueProcessingPredicate;
this.m_forwardHistory = [];
this.m_reverseHistory = [];
}
LcsDiff.prototype.ElementsAreEqual = function (originalIndex, newIndex) {
return (this.OriginalSequence.getElementAtIndex(originalIndex) === this.ModifiedSequence.getElementAtIndex(newIndex));
};
LcsDiff.prototype.OriginalElementsAreEqual = function (index1, index2) {
return (this.OriginalSequence.getElementAtIndex(index1) === this.OriginalSequence.getElementAtIndex(index2));
};
LcsDiff.prototype.ModifiedElementsAreEqual = function (index1, index2) {
return (this.ModifiedSequence.getElementAtIndex(index1) === this.ModifiedSequence.getElementAtIndex(index2));
};
LcsDiff.prototype.ComputeDiff = function (pretty) {
return this._ComputeDiff(0, this.OriginalSequence.getLength() - 1, 0, this.ModifiedSequence.getLength() - 1, pretty);
};
/**
* Computes the differences between the original and modified input
* sequences on the bounded range.
* @returns An array of the differences between the two input sequences.
*/
LcsDiff.prototype._ComputeDiff = function (originalStart, originalEnd, modifiedStart, modifiedEnd, pretty) {
var quitEarlyArr = [false];
var changes = this.ComputeDiffRecursive(originalStart, originalEnd, modifiedStart, modifiedEnd, quitEarlyArr);
if (pretty) {
// We have to clean up the computed diff to be more intuitive
// but it turns out this cannot be done correctly until the entire set
// of diffs have been computed
return this.PrettifyChanges(changes);
}
return changes;
};
/**
* Private helper method which computes the differences on the bounded range
* recursively.
* @returns An array of the differences between the two input sequences.
*/
LcsDiff.prototype.ComputeDiffRecursive = function (originalStart, originalEnd, modifiedStart, modifiedEnd, quitEarlyArr) {
quitEarlyArr[0] = false;
// Find the start of the differences
while (originalStart <= originalEnd && modifiedStart <= modifiedEnd && this.ElementsAreEqual(originalStart, modifiedStart)) {
originalStart++;
modifiedStart++;
}
// Find the end of the differences
while (originalEnd >= originalStart && modifiedEnd >= modifiedStart && this.ElementsAreEqual(originalEnd, modifiedEnd)) {
originalEnd--;
modifiedEnd--;
}
// In the special case where we either have all insertions or all deletions or the sequences are identical
if (originalStart > originalEnd || modifiedStart > modifiedEnd) {
var changes = void 0;
if (modifiedStart <= modifiedEnd) {
Debug.Assert(originalStart === originalEnd + 1, 'originalStart should only be one more than originalEnd');
// All insertions
changes = [
new DiffChange(originalStart, 0, modifiedStart, modifiedEnd - modifiedStart + 1)
];
}
else if (originalStart <= originalEnd) {
Debug.Assert(modifiedStart === modifiedEnd + 1, 'modifiedStart should only be one more than modifiedEnd');
// All deletions
changes = [
new DiffChange(originalStart, originalEnd - originalStart + 1, modifiedStart, 0)
];
}
else {
Debug.Assert(originalStart === originalEnd + 1, 'originalStart should only be one more than originalEnd');
Debug.Assert(modifiedStart === modifiedEnd + 1, 'modifiedStart should only be one more than modifiedEnd');
// Identical sequences - No differences
changes = [];
}
return changes;
}
// This problem can be solved using the Divide-And-Conquer technique.
var midOriginalArr = [0], midModifiedArr = [0];
var result = this.ComputeRecursionPoint(originalStart, originalEnd, modifiedStart, modifiedEnd, midOriginalArr, midModifiedArr, quitEarlyArr);
var midOriginal = midOriginalArr[0];
var midModified = midModifiedArr[0];
if (result !== null) {
// Result is not-null when there was enough memory to compute the changes while
// searching for the recursion point
return result;
}
else if (!quitEarlyArr[0]) {
// We can break the problem down recursively by finding the changes in the
// First Half: (originalStart, modifiedStart) to (midOriginal, midModified)
// Second Half: (midOriginal + 1, minModified + 1) to (originalEnd, modifiedEnd)
// NOTE: ComputeDiff() is inclusive, therefore the second range starts on the next point
var leftChanges = this.ComputeDiffRecursive(originalStart, midOriginal, modifiedStart, midModified, quitEarlyArr);
var rightChanges = [];
if (!quitEarlyArr[0]) {
rightChanges = this.ComputeDiffRecursive(midOriginal + 1, originalEnd, midModified + 1, modifiedEnd, quitEarlyArr);
}
else {
// We did't have time to finish the first half, so we don't have time to compute this half.
// Consider the entire rest of the sequence different.
rightChanges = [
new DiffChange(midOriginal + 1, originalEnd - (midOriginal + 1) + 1, midModified + 1, modifiedEnd - (midModified + 1) + 1)
];
}
return this.ConcatenateChanges(leftChanges, rightChanges);
}
// If we hit here, we quit early, and so can't return anything meaningful
return [
new DiffChange(originalStart, originalEnd - originalStart + 1, modifiedStart, modifiedEnd - modifiedStart + 1)
];
};
LcsDiff.prototype.WALKTRACE = function (diagonalForwardBase, diagonalForwardStart, diagonalForwardEnd, diagonalForwardOffset, diagonalReverseBase, diagonalReverseStart, diagonalReverseEnd, diagonalReverseOffset, forwardPoints, reversePoints, originalIndex, originalEnd, midOriginalArr, modifiedIndex, modifiedEnd, midModifiedArr, deltaIsEven, quitEarlyArr) {
var forwardChanges = null, reverseChanges = null;
// First, walk backward through the forward diagonals history
var changeHelper = new DiffChangeHelper();
var diagonalMin = diagonalForwardStart;
var diagonalMax = diagonalForwardEnd;
var diagonalRelative = (midOriginalArr[0] - midModifiedArr[0]) - diagonalForwardOffset;
var lastOriginalIndex = Number.MIN_VALUE;
var historyIndex = this.m_forwardHistory.length - 1;
var diagonal;
do {
// Get the diagonal index from the relative diagonal number
diagonal = diagonalRelative + diagonalForwardBase;
// Figure out where we came from
if (diagonal === diagonalMin || (diagonal < diagonalMax && forwardPoints[diagonal - 1] < forwardPoints[diagonal + 1])) {
// Vertical line (the element is an insert)
originalIndex = forwardPoints[diagonal + 1];
modifiedIndex = originalIndex - diagonalRelative - diagonalForwardOffset;
if (originalIndex < lastOriginalIndex) {
changeHelper.MarkNextChange();
}
lastOriginalIndex = originalIndex;
changeHelper.AddModifiedElement(originalIndex + 1, modifiedIndex);
diagonalRelative = (diagonal + 1) - diagonalForwardBase; //Setup for the next iteration
}
else {
// Horizontal line (the element is a deletion)
originalIndex = forwardPoints[diagonal - 1] + 1;
modifiedIndex = originalIndex - diagonalRelative - diagonalForwardOffset;
if (originalIndex < lastOriginalIndex) {
changeHelper.MarkNextChange();
}
lastOriginalIndex = originalIndex - 1;
changeHelper.AddOriginalElement(originalIndex, modifiedIndex + 1);
diagonalRelative = (diagonal - 1) - diagonalForwardBase; //Setup for the next iteration
}
if (historyIndex >= 0) {
forwardPoints = this.m_forwardHistory[historyIndex];
diagonalForwardBase = forwardPoints[0]; //We stored this in the first spot
diagonalMin = 1;
diagonalMax = forwardPoints.length - 1;
}
} while (--historyIndex >= -1);
// Ironically, we get the forward changes as the reverse of the
// order we added them since we technically added them backwards
forwardChanges = changeHelper.getReverseChanges();
if (quitEarlyArr[0]) {
// TODO: Calculate a partial from the reverse diagonals.
// For now, just assume everything after the midOriginal/midModified point is a diff
var originalStartPoint = midOriginalArr[0] + 1;
var modifiedStartPoint = midModifiedArr[0] + 1;
if (forwardChanges !== null && forwardChanges.length > 0) {
var lastForwardChange = forwardChanges[forwardChanges.length - 1];
originalStartPoint = Math.max(originalStartPoint, lastForwardChange.getOriginalEnd());
modifiedStartPoint = Math.max(modifiedStartPoint, lastForwardChange.getModifiedEnd());
}
reverseChanges = [
new DiffChange(originalStartPoint, originalEnd - originalStartPoint + 1, modifiedStartPoint, modifiedEnd - modifiedStartPoint + 1)
];
}
else {
// Now walk backward through the reverse diagonals history
changeHelper = new DiffChangeHelper();
diagonalMin = diagonalReverseStart;
diagonalMax = diagonalReverseEnd;
diagonalRelative = (midOriginalArr[0] - midModifiedArr[0]) - diagonalReverseOffset;
lastOriginalIndex = Number.MAX_VALUE;
historyIndex = (deltaIsEven) ? this.m_reverseHistory.length - 1 : this.m_reverseHistory.length - 2;
do {
// Get the diagonal index from the relative diagonal number
diagonal = diagonalRelative + diagonalReverseBase;
// Figure out where we came from
if (diagonal === diagonalMin || (diagonal < diagonalMax && reversePoints[diagonal - 1] >= reversePoints[diagonal + 1])) {
// Horizontal line (the element is a deletion))
originalIndex = reversePoints[diagonal + 1] - 1;
modifiedIndex = originalIndex - diagonalRelative - diagonalReverseOffset;
if (originalIndex > lastOriginalIndex) {
changeHelper.MarkNextChange();
}
lastOriginalIndex = originalIndex + 1;
changeHelper.AddOriginalElement(originalIndex + 1, modifiedIndex + 1);
diagonalRelative = (diagonal + 1) - diagonalReverseBase; //Setup for the next iteration
}
else {
// Vertical line (the element is an insertion)
originalIndex = reversePoints[diagonal - 1];
modifiedIndex = originalIndex - diagonalRelative - diagonalReverseOffset;
if (originalIndex > lastOriginalIndex) {
changeHelper.MarkNextChange();
}
lastOriginalIndex = originalIndex;
changeHelper.AddModifiedElement(originalIndex + 1, modifiedIndex + 1);
diagonalRelative = (diagonal - 1) - diagonalReverseBase; //Setup for the next iteration
}
if (historyIndex >= 0) {
reversePoints = this.m_reverseHistory[historyIndex];
diagonalReverseBase = reversePoints[0]; //We stored this in the first spot
diagonalMin = 1;
diagonalMax = reversePoints.length - 1;
}
} while (--historyIndex >= -1);
// There are cases where the reverse history will find diffs that
// are correct, but not intuitive, so we need shift them.
reverseChanges = changeHelper.getChanges();
}
return this.ConcatenateChanges(forwardChanges, reverseChanges);
};
/**
* Given the range to compute the diff on, this method finds the point:
* (midOriginal, midModified)
* that exists in the middle of the LCS of the two sequences and
* is the point at which the LCS problem may be broken down recursively.
* This method will try to keep the LCS trace in memory. If the LCS recursion
* point is calculated and the full trace is available in memory, then this method
* will return the change list.
* @param originalStart The start bound of the original sequence range
* @param originalEnd The end bound of the original sequence range
* @param modifiedStart The start bound of the modified sequence range
* @param modifiedEnd The end bound of the modified sequence range
* @param midOriginal The middle point of the original sequence range
* @param midModified The middle point of the modified sequence range
* @returns The diff changes, if available, otherwise null
*/
LcsDiff.prototype.ComputeRecursionPoint = function (originalStart, originalEnd, modifiedStart, modifiedEnd, midOriginalArr, midModifiedArr, quitEarlyArr) {
var originalIndex = 0, modifiedIndex = 0;
var diagonalForwardStart = 0, diagonalForwardEnd = 0;
var diagonalReverseStart = 0, diagonalReverseEnd = 0;
var numDifferences;
// To traverse the edit graph and produce the proper LCS, our actual
// start position is just outside the given boundary
originalStart--;
modifiedStart--;
// We set these up to make the compiler happy, but they will
// be replaced before we return with the actual recursion point
midOriginalArr[0] = 0;
midModifiedArr[0] = 0;
// Clear out the history
this.m_forwardHistory = [];
this.m_reverseHistory = [];
// Each cell in the two arrays corresponds to a diagonal in the edit graph.
// The integer value in the cell represents the originalIndex of the furthest
// reaching point found so far that ends in that diagonal.
// The modifiedIndex can be computed mathematically from the originalIndex and the diagonal number.
var maxDifferences = (originalEnd - originalStart) + (modifiedEnd - modifiedStart);
var numDiagonals = maxDifferences + 1;
var forwardPoints = new Array(numDiagonals);
var reversePoints = new Array(numDiagonals);
// diagonalForwardBase: Index into forwardPoints of the diagonal which passes through (originalStart, modifiedStart)
// diagonalReverseBase: Index into reversePoints of the diagonal which passes through (originalEnd, modifiedEnd)
var diagonalForwardBase = (modifiedEnd - modifiedStart);
var diagonalReverseBase = (originalEnd - originalStart);
// diagonalForwardOffset: Geometric offset which allows modifiedIndex to be computed from originalIndex and the
// diagonal number (relative to diagonalForwardBase)
// diagonalReverseOffset: Geometric offset which allows modifiedIndex to be computed from originalIndex and the
// diagonal number (relative to diagonalReverseBase)
var diagonalForwardOffset = (originalStart - modifiedStart);
var diagonalReverseOffset = (originalEnd - modifiedEnd);
// delta: The difference between the end diagonal and the start diagonal. This is used to relate diagonal numbers
// relative to the start diagonal with diagonal numbers relative to the end diagonal.
// The Even/Oddn-ness of this delta is important for determining when we should check for overlap
var delta = diagonalReverseBase - diagonalForwardBase;
var deltaIsEven = (delta % 2 === 0);
// Here we set up the start and end points as the furthest points found so far
// in both the forward and reverse directions, respectively
forwardPoints[diagonalForwardBase] = originalStart;
reversePoints[diagonalReverseBase] = originalEnd;
// Remember if we quit early, and thus need to do a best-effort result instead of a real result.
quitEarlyArr[0] = false;
// A couple of points:
// --With this method, we iterate on the number of differences between the two sequences.
// The more differences there actually are, the longer this will take.
// --Also, as the number of differences increases, we have to search on diagonals further
// away from the reference diagonal (which is diagonalForwardBase for forward, diagonalReverseBase for reverse).
// --We extend on even diagonals (relative to the reference diagonal) only when numDifferences
// is even and odd diagonals only when numDifferences is odd.
var diagonal, tempOriginalIndex;
for (numDifferences = 1; numDifferences <= (maxDifferences / 2) + 1; numDifferences++) {
var furthestOriginalIndex = 0;
var furthestModifiedIndex = 0;
// Run the algorithm in the forward direction
diagonalForwardStart = this.ClipDiagonalBound(diagonalForwardBase - numDifferences, numDifferences, diagonalForwardBase, numDiagonals);
diagonalForwardEnd = this.ClipDiagonalBound(diagonalForwardBase + numDifferences, numDifferences, diagonalForwardBase, numDiagonals);
for (diagonal = diagonalForwardStart; diagonal <= diagonalForwardEnd; diagonal += 2) {
// STEP 1: We extend the furthest reaching point in the present diagonal
// by looking at the diagonals above and below and picking the one whose point
// is further away from the start point (originalStart, modifiedStart)
if (diagonal === diagonalForwardStart || (diagonal < diagonalForwardEnd && forwardPoints[diagonal - 1] < forwardPoints[diagonal + 1])) {
originalIndex = forwardPoints[diagonal + 1];
}
else {
originalIndex = forwardPoints[diagonal - 1] + 1;
}
modifiedIndex = originalIndex - (diagonal - diagonalForwardBase) - diagonalForwardOffset;
// Save the current originalIndex so we can test for false overlap in step 3
tempOriginalIndex = originalIndex;
// STEP 2: We can continue to extend the furthest reaching point in the present diagonal
// so long as the elements are equal.
while (originalIndex < originalEnd && modifiedIndex < modifiedEnd && this.ElementsAreEqual(originalIndex + 1, modifiedIndex + 1)) {
originalIndex++;
modifiedIndex++;
}
forwardPoints[diagonal] = originalIndex;
if (originalIndex + modifiedIndex > furthestOriginalIndex + furthestModifiedIndex) {
furthestOriginalIndex = originalIndex;
furthestModifiedIndex = modifiedIndex;
}
// STEP 3: If delta is odd (overlap first happens on forward when delta is odd)
// and diagonal is in the range of reverse diagonals computed for numDifferences-1
// (the previous iteration; we haven't computed reverse diagonals for numDifferences yet)
// then check for overlap.
if (!deltaIsEven && Math.abs(diagonal - diagonalReverseBase) <= (numDifferences - 1)) {
if (originalIndex >= reversePoints[diagonal]) {
midOriginalArr[0] = originalIndex;
midModifiedArr[0] = modifiedIndex;
if (tempOriginalIndex <= reversePoints[diagonal] && MaxDifferencesHistory > 0 && numDifferences <= (MaxDifferencesHistory + 1)) {
// BINGO! We overlapped, and we have the full trace in memory!
return this.WALKTRACE(diagonalForwardBase, diagonalForwardStart, diagonalForwardEnd, diagonalForwardOffset, diagonalReverseBase, diagonalReverseStart, diagonalReverseEnd, diagonalReverseOffset, forwardPoints, reversePoints, originalIndex, originalEnd, midOriginalArr, modifiedIndex, modifiedEnd, midModifiedArr, deltaIsEven, quitEarlyArr);
}
else {
// Either false overlap, or we didn't have enough memory for the full trace
// Just return the recursion point
return null;
}
}
}
}
// Check to see if we should be quitting early, before moving on to the next iteration.
var matchLengthOfLongest = ((furthestOriginalIndex - originalStart) + (furthestModifiedIndex - modifiedStart) - numDifferences) / 2;
if (this.ContinueProcessingPredicate !== null && !this.ContinueProcessingPredicate(furthestOriginalIndex, this.OriginalSequence, matchLengthOfLongest)) {
// We can't finish, so skip ahead to generating a result from what we have.
quitEarlyArr[0] = true;
// Use the furthest distance we got in the forward direction.
midOriginalArr[0] = furthestOriginalIndex;
midModifiedArr[0] = furthestModifiedIndex;
if (matchLengthOfLongest > 0 && MaxDifferencesHistory > 0 && numDifferences <= (MaxDifferencesHistory + 1)) {
// Enough of the history is in memory to walk it backwards
return this.WALKTRACE(diagonalForwardBase, diagonalForwardStart, diagonalForwardEnd, diagonalForwardOffset, diagonalReverseBase, diagonalReverseStart, diagonalReverseEnd, diagonalReverseOffset, forwardPoints, reversePoints, originalIndex, originalEnd, midOriginalArr, modifiedIndex, modifiedEnd, midModifiedArr, deltaIsEven, quitEarlyArr);
}
else {
// We didn't actually remember enough of the history.
//Since we are quiting the diff early, we need to shift back the originalStart and modified start
//back into the boundary limits since we decremented their value above beyond the boundary limit.
originalStart++;
modifiedStart++;
return [
new DiffChange(originalStart, originalEnd - originalStart + 1, modifiedStart, modifiedEnd - modifiedStart + 1)
];
}
}
// Run the algorithm in the reverse direction
diagonalReverseStart = this.ClipDiagonalBound(diagonalReverseBase - numDifferences, numDifferences, diagonalReverseBase, numDiagonals);
diagonalReverseEnd = this.ClipDiagonalBound(diagonalReverseBase + numDifferences, numDifferences, diagonalReverseBase, numDiagonals);
for (diagonal = diagonalReverseStart; diagonal <= diagonalReverseEnd; diagonal += 2) {
// STEP 1: We extend the furthest reaching point in the present diagonal
// by looking at the diagonals above and below and picking the one whose point
// is further away from the start point (originalEnd, modifiedEnd)
if (diagonal === diagonalReverseStart || (diagonal < diagonalReverseEnd && reversePoints[diagonal - 1] >= reversePoints[diagonal + 1])) {
originalIndex = reversePoints[diagonal + 1] - 1;
}
else {
originalIndex = reversePoints[diagonal - 1];
}
modifiedIndex = originalIndex - (diagonal - diagonalReverseBase) - diagonalReverseOffset;
// Save the current originalIndex so we can test for false overlap
tempOriginalIndex = originalIndex;
// STEP 2: We can continue to extend the furthest reaching point in the present diagonal
// as long as the elements are equal.
while (originalIndex > originalStart && modifiedIndex > modifiedStart && this.ElementsAreEqual(originalIndex, modifiedIndex)) {
originalIndex--;
modifiedIndex--;
}
reversePoints[diagonal] = originalIndex;
// STEP 4: If delta is even (overlap first happens on reverse when delta is even)
// and diagonal is in the range of forward diagonals computed for numDifferences
// then check for overlap.
if (deltaIsEven && Math.abs(diagonal - diagonalForwardBase) <= numDifferences) {
if (originalIndex <= forwardPoints[diagonal]) {
midOriginalArr[0] = originalIndex;
midModifiedArr[0] = modifiedIndex;
if (tempOriginalIndex >= forwardPoints[diagonal] && MaxDifferencesHistory > 0 && numDifferences <= (MaxDifferencesHistory + 1)) {
// BINGO! We overlapped, and we have the full trace in memory!
return this.WALKTRACE(diagonalForwardBase, diagonalForwardStart, diagonalForwardEnd, diagonalForwardOffset, diagonalReverseBase, diagonalReverseStart, diagonalReverseEnd, diagonalReverseOffset, forwardPoints, reversePoints, originalIndex, originalEnd, midOriginalArr, modifiedIndex, modifiedEnd, midModifiedArr, deltaIsEven, quitEarlyArr);
}
else {
// Either false overlap, or we didn't have enough memory for the full trace
// Just return the recursion point
return null;
}
}
}
}
// Save current vectors to history before the next iteration
if (numDifferences <= MaxDifferencesHistory) {
// We are allocating space for one extra int, which we fill with
// the index of the diagonal base index
var temp = new Array(diagonalForwardEnd - diagonalForwardStart + 2);
temp[0] = diagonalForwardBase - diagonalForwardStart + 1;
MyArray.Copy(forwardPoints, diagonalForwardStart, temp, 1, diagonalForwardEnd - diagonalForwardStart + 1);
this.m_forwardHistory.push(temp);
temp = new Array(diagonalReverseEnd - diagonalReverseStart + 2);
temp[0] = diagonalReverseBase - diagonalReverseStart + 1;
MyArray.Copy(reversePoints, diagonalReverseStart, temp, 1, diagonalReverseEnd - diagonalReverseStart + 1);
this.m_reverseHistory.push(temp);
}
}
// If we got here, then we have the full trace in history. We just have to convert it to a change list
// NOTE: This part is a bit messy
return this.WALKTRACE(diagonalForwardBase, diagonalForwardStart, diagonalForwardEnd, diagonalForwardOffset, diagonalReverseBase, diagonalReverseStart, diagonalReverseEnd, diagonalReverseOffset, forwardPoints, reversePoints, originalIndex, originalEnd, midOriginalArr, modifiedIndex, modifiedEnd, midModifiedArr, deltaIsEven, quitEarlyArr);
};
/**
* Shifts the given changes to provide a more intuitive diff.
* While the first element in a diff matches the first element after the diff,
* we shift the diff down.
*
* @param changes The list of changes to shift
* @returns The shifted changes
*/
LcsDiff.prototype.PrettifyChanges = function (changes) {
// Shift all the changes down first
for (var i = 0; i < changes.length; i++) {
var change = changes[i];
var originalStop = (i < changes.length - 1) ? changes[i + 1].originalStart : this.OriginalSequence.getLength();
var modifiedStop = (i < changes.length - 1) ? changes[i + 1].modifiedStart : this.ModifiedSequence.getLength();
var checkOriginal = change.originalLength > 0;
var checkModified = change.modifiedLength > 0;
while (change.originalStart + change.originalLength < originalStop &&
change.modifiedStart + change.modifiedLength < modifiedStop &&
(!checkOriginal || this.OriginalElementsAreEqual(change.originalStart, change.originalStart + change.originalLength)) &&
(!checkModified || this.ModifiedElementsAreEqual(change.modifiedStart, change.modifiedStart + change.modifiedLength))) {
change.originalStart++;
change.modifiedStart++;
}
var mergedChangeArr = [null];
if (i < changes.length - 1 && this.ChangesOverlap(changes[i], changes[i + 1], mergedChangeArr)) {
changes[i] = mergedChangeArr[0];
changes.splice(i + 1, 1);
i--;
continue;
}
}
// Shift changes back up until we hit empty or whitespace-only lines
for (var i = changes.length - 1; i >= 0; i--) {
var change = changes[i];
var originalStop = 0;
var modifiedStop = 0;
if (i > 0) {
var prevChange = changes[i - 1];
if (prevChange.originalLength > 0) {
originalStop = prevChange.originalStart + prevChange.originalLength;
}
if (prevChange.modifiedLength > 0) {
modifiedStop = prevChange.modifiedStart + prevChange.modifiedLength;
}
}
var checkOriginal = change.originalLength > 0;
var checkModified = change.modifiedLength > 0;
var bestDelta = 0;
var bestScore = this._boundaryScore(change.originalStart, change.originalLength, change.modifiedStart, change.modifiedLength);
for (var delta = 1;; delta++) {
var originalStart = change.originalStart - delta;
var modifiedStart = change.modifiedStart - delta;
if (originalStart < originalStop || modifiedStart < modifiedStop) {
break;
}
if (checkOriginal && !this.OriginalElementsAreEqual(originalStart, originalStart + change.originalLength)) {
break;
}
if (checkModified && !this.ModifiedElementsAreEqual(modifiedStart, modifiedStart + change.modifiedLength)) {
break;
}
var score = this._boundaryScore(originalStart, change.originalLength, modifiedStart, change.modifiedLength);
if (score > bestScore) {
bestScore = score;
bestDelta = delta;
}
}
change.originalStart -= bestDelta;
change.modifiedStart -= bestDelta;
}
return changes;
};
LcsDiff.prototype._OriginalIsBoundary = function (index) {
if (index <= 0 || index >= this.OriginalSequence.getLength() - 1) {
return true;
}
var element = this.OriginalSequence.getElementAtIndex(index);
return (typeof element === 'string' && /^\s*$/.test(element));
};
LcsDiff.prototype._OriginalRegionIsBoundary = function (originalStart, originalLength) {
if (this._OriginalIsBoundary(originalStart) || this._OriginalIsBoundary(originalStart - 1)) {
return true;
}
if (originalLength > 0) {
var originalEnd = originalStart + originalLength;
if (this._OriginalIsBoundary(originalEnd - 1) || this._OriginalIsBoundary(originalEnd)) {
return true;
}
}
return false;
};
LcsDiff.prototype._ModifiedIsBoundary = function (index) {
if (index <= 0 || index >= this.ModifiedSequence.getLength() - 1) {
return true;
}
var element = this.ModifiedSequence.getElementAtIndex(index);
return (typeof element === 'string' && /^\s*$/.test(element));
};
LcsDiff.prototype._ModifiedRegionIsBoundary = function (modifiedStart, modifiedLength) {
if (this._ModifiedIsBoundary(modifiedStart) || this._ModifiedIsBoundary(modifiedStart - 1)) {
return true;
}
if (modifiedLength > 0) {
var modifiedEnd = modifiedStart + modifiedLength;
if (this._ModifiedIsBoundary(modifiedEnd - 1) || this._ModifiedIsBoundary(modifiedEnd)) {
return true;
}
}
return false;
};
LcsDiff.prototype._boundaryScore = function (originalStart, originalLength, modifiedStart, modifiedLength) {
var originalScore = (this._OriginalRegionIsBoundary(originalStart, originalLength) ? 1 : 0);
var modifiedScore = (this._ModifiedRegionIsBoundary(modifiedStart, modifiedLength) ? 1 : 0);
return (originalScore + modifiedScore);
};
/**
* Concatenates the two input DiffChange lists and returns the resulting
* list.
* @param The left changes
* @param The right changes
* @returns The concatenated list
*/
LcsDiff.prototype.ConcatenateChanges = function (left, right) {
var mergedChangeArr = [];
if (left.length === 0 || right.length === 0) {
return (right.length > 0) ? right : left;
}
else if (this.ChangesOverlap(left[left.length - 1], right[0], mergedChangeArr)) {
// Since we break the problem down recursively, it is possible that we
// might recurse in the middle of a change thereby splitting it into
// two changes. Here in the combining stage, we detect and fuse those
// changes back together
var result = new Array(left.length + right.length - 1);
MyArray.Copy(left, 0, result, 0, left.length - 1);
result[left.length - 1] = mergedChangeArr[0];
MyArray.Copy(right, 1, result, left.length, right.length - 1);
return result;
}
else {
var result = new Array(left.length + right.length);
MyArray.Copy(left, 0, result, 0, left.length);
MyArray.Copy(right, 0, result, left.length, right.length);
return result;
}
};
/**
* Returns true if the two changes overlap and can be merged into a single
* change
* @param left The left change
* @param right The right change
* @param mergedChange The merged change if the two overlap, null otherwise
* @returns True if the two changes overlap
*/
LcsDiff.prototype.ChangesOverlap = function (left, right, mergedChangeArr) {
Debug.Assert(left.originalStart <= right.originalStart, 'Left change is not less than or equal to right change');
Debug.Assert(left.modifiedStart <= right.modifiedStart, 'Left change is not less than or equal to right change');
if (left.originalStart + left.originalLength >= right.originalStart || left.modifiedStart + left.modifiedLength >= right.modifiedStart) {
var originalStart = left.originalStart;
var originalLength = left.originalLength;
var modifiedStart = left.modifiedStart;
var modifiedLength = left.modifiedLength;
if (left.originalStart + left.originalLength >= right.originalStart) {
originalLength = right.originalStart + right.originalLength - left.originalStart;
}
if (left.modifiedStart + left.modifiedLength >= right.modifiedStart) {
modifiedLength = right.modifiedStart + right.modifiedLength - left.modifiedStart;
}
mergedChangeArr[0] = new DiffChange(originalStart, originalLength, modifiedStart, modifiedLength);
return true;
}
else {
mergedChangeArr[0] = null;
return false;
}
};
/**
* Helper method used to clip a diagonal index to the range of valid
* diagonals. This also decides whether or not the diagonal index,
* if it exceeds the boundary, should be clipped to the boundary or clipped
* one inside the boundary depending on the Even/Odd status of the boundary
* and numDifferences.
* @param diagonal The index of the diagonal to clip.
* @param numDifferences The current number of differences being iterated upon.
* @param diagonalBaseIndex The base reference diagonal.
* @param numDiagonals The total number of diagonals.
* @returns The clipped diagonal index.
*/
LcsDiff.prototype.ClipDiagonalBound = function (diagonal, numDifferences, diagonalBaseIndex, numDiagonals) {
if (diagonal >= 0 && diagonal < numDiagonals) {
// Nothing to clip, its in range
return diagonal;
}
// diagonalsBelow: The number of diagonals below the reference diagonal
// diagonalsAbove: The number of diagonals above the reference diagonal
var diagonalsBelow = diagonalBaseIndex;
var diagonalsAbove = numDiagonals - diagonalBaseIndex - 1;
var diffEven = (numDifferences % 2 === 0);
if (diagonal < 0) {
var lowerBoundEven = (diagonalsBelow % 2 === 0);
return (diffEven === lowerBoundEven) ? 0 : 1;
}
else {
var upperBoundEven = (diagonalsAbove % 2 === 0);
return (diffEven === upperBoundEven) ? numDiagonals - 1 : numDiagonals - 2;
}
};
return LcsDiff;
}());
export { LcsDiff };